Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Combination of Combustion Concept and Fuel Property for Ultra-Clean DI Diesel

2004-06-08
2004-01-1868
Experimental investigations were previously conducted with a direct-injection diesel engine with the aim of reducing exhaust emissions, especially nitrogen oxides (NOx) and particulate matter (PM). As a result of that work, a combustion concept, called Modulated Kinetics (MK) combustion, was developed that reduces NOx and smoke simultaneously through low-temperature combustion and premixed combustion to achieve a cleaner diesel engine. In subsequent work, it was found that applying a low compression ratio was effective in expanding the MK combustion region on the high-load side. The MK concept was then combined with an exhaust after-treatment system and applied to a test vehicle. The results indicated the attainment of ULEV emission levels, albeit in laboratory evaluations. In the present work, the combination of the MK combustion concept and certain fuel properties has been experimentally investigated with the aim of reducing exhaust emissions further.
Technical Paper

Soot Regeneration Model for SiC-DPF System Design

2004-03-08
2004-01-0159
The Diesel Particulate Filter (DPF) system has been developed as one of key technologies to comply with tight diesel PM emission regulations. For the DPF control system, it is necessary to maintain temperature inside the DPF below the allowable service temperature, especially during soot regeneration to prevent catalyst deterioration and cracks. Therefore, the evaluation of soot regeneration is one of the key development items for the DPF system. On the other hand, regeneration evaluation requires a lot of time and cost since many different regeneration conditions should be investigated in order to simulate actual driving. The simulation tool to predict soot regeneration behavior is a powerful tool to accelerate the development of DPF design and safe regeneration control strategies. This paper describes the soot regeneration model applied to fuel additive and catalyzed types, and shows good correlation with measured data.
Technical Paper

The Development of a Cobalt-Free Exhaust Valve Seat Insert

2004-03-08
2004-01-0502
Generally, cobalt-contained sintered materials have mainly been applied for exhaust valve seat inserts (VSI). However, there is a trend to restrict the use of cobalt as well as lead environmental law, and cobalt is expensive. To solve these problems, a new exhaust VSI on the assumption of being cobalt and lead free, applicable for conventional engines, having good machinability, and with a reduced cost was developed. The new exhaust VSI is a material dispersed with two types of hard particles, Fe-Cr-C and Fe-Mo-Si, in the matrix of an Fe-3.5mass%Mo at the ratio of 15 mass % and 10 mass % respectively.
Technical Paper

Development of a New 5.6L Nissan V8 Gasoline Engine

2004-03-08
2004-01-0985
This paper describes a new 5.6-liter DOHC V8 engine, VK56DE, which was developed for use on a new full-size sport utility vehicle and a full-size pickup truck. To meet the demands for acceleration performance when merging into freeway traffic, passing or re-acceleration performance from low speed in city driving and hill-climbing or passing performance when towing, the VK56DE engine produces high output power at top speed and also generates ample torque at low and middle engine speeds (90% of its maximum torque is available at speeds as low as 2500 rpm). Furthermore, this engine achieves top-level driving comfort in its class as a result of being derived from the VK45DE engine that was developed for use on a sporty luxury sedan. Development efforts were focused on how to balance the required performance with the need for quietness and smoothness.
Technical Paper

Emission Reduction Technologies Adopted for Japan U-LEV Certified Vehicles

2003-05-19
2003-01-1872
This paper describes the emission reduction technologies applied to 4- and 6-cylinder engines used on Japanese market models certified as ultra-low emission vehicles (U-LEVs) in Japan. To qualify for this rigorous U-LEV certification, a vehicle must reduce hydrocarbon (HC) and nitrogen oxide (NOx) emissions by an additional 75% from the levels mandated by Japan's 2000 exhaust emission regulations. Nearly all Nissan Japanese models fitted with a gasoline engine, ranging from in-line 4-cylinder engines to V6 engines, have now been certified as U-LEVs. This has been accomplished by further improving the emission reduction technologies that were developed for the Sentra CA, which was launched in the U.S. market in 2000 as the world's first gasoline-fueled vehicle to qualify for Partial Zero Emission Vehicle (P-ZEV) credits from the California Air Resources Board. The specific new technologies involved are as follows.
Technical Paper

Development of a New HC-Adsorption Three-Way Catalyst System for Partial-ZEV Performance

2003-05-19
2003-01-1861
This paper describes a newly developed HC-adsorption three-way catalyst and adsorption system that reduce cold-start HC emissions with high efficiency. This system is the first of its kind anywhere in the world to be implemented on production vehicles. An overview is given of the various improvements made to achieve higher cold-start HC conversion efficiency. Improvement of conversion performance was accomplished by (1) increasing the thermal stability of the HC adsorbent, (2) improving desorbed HC conversion efficiency and durability and (3) optimizing the geometric surface area (GSA) of the substrate. Concretely, the thermal stability of the adsorbent was improved by enhancing the high-temperature durability of zeolite. Improvement of desorbed HC conversion efficiency was accomplished by improving the OSC material so as to match the temperature rise characteristic and usage temperature of the catalyst.
Technical Paper

Development of Third Generation of Gasoline P-ZEV Technology

2003-03-03
2003-01-0816
This paper describes the third generation of the partial zero emission vehicle (P-ZEV) technology originally adopted on the Nissan Sentra CA sold in California. The 2000 Nissan Sentra CA became the world's first gasoline-fueled car to qualify for P-ZEV credits from the California Air Resources Board (CARB). The third-generation P-ZEV system has been substantially reduced in size and cost, compared with the Sentra CA system, enabling it to be used on high-volume models. This system complies with the P-ZEV requirements, including those for zero evaporative emissions and Onboard Diagnostics II (OBD-II). To achieve a more compact and lower-cost system, an ultra-thin-walled catalyst substrate, the world's first to attain a 1.8-mil wall thickness, has been adopted along with catalysts that display excellent low-temperature activity. As a result, low-temperature catalyst activity has been significantly improved.
Technical Paper

Study of Fuel Dilution in Direct-Injection and Multipoint Injection Gasoline Engines

2002-05-06
2002-01-1647
Fuel dilution is one of the phenomena requiring attention in direct-injection engines. This study examined the factors contributing to increased fuel dilution in direct-injection and conventional multipoint injection gasoline engines, focusing in particular on fuel dilution in the oil pan. The results showed that fuel dilution is affected by fuel consumption, fuel properties and oil/cooling water temperatures in multipoint injection engines. In addition to these factors, fuel injection timing is another factor that increases fuel dilution in direct-injection engines.
Technical Paper

Development of Thinnest Wall Catalyst Substrate

2002-03-04
2002-01-0358
The thinnest wall thickness of automotive catalyst substrates has previously been 30 μm for metal substrates and 50 μm for ceramic substrates. This paper describes a newly developed catalyst substrate that is the world's first to achieve 20-μm-thick cell walls. This catalyst substrate features low thermal capacity and low pressure loss. Generally, a thinner cell wall decreases substrate strength and heat shock resistance. However, the development of a “diffused junction method”, replacing the previous “wax bonding method”, and a small waved foil has overcome these problems. This diffused junction method made it possible to strengthen the contact points between the inner waved foil and the rolled foil compared with previous substrates. It was also found that heat shock resistance at high temperature can be much improved by applying a slight wave to the foil instead of using a plane foil.
Technical Paper

Study of an Integrated Diesel Engine-CVT Control Algorithm for Improving Drivability and Exhaust Emission Performance

2001-10-01
2001-01-3452
Diesel engines have attracted more attention in recent years as one means of reducing carbon dioxide (CO2) emissions from motor vehicles. One of the major issues for diesel engines is exhaust emissions performance. Diesel engines also face various difficulties in providing the driving force demanded by the driver because of their greater inertia than that of gasoline engines. Meanwhile, continuously variable transmissions (CVTs) have been popularized as gearboxes that execute ratio changes continuously without generating shift shock. The aim of this research is to achieve higher levels of drivability and exhaust emissions performance by mating a CVT to a diesel engine and making maximum use of the continuous ratio change capability. An integrated engine-CVT control algorithm that can freely set the driving force and also the engine operating conditions for generating that driving force has been developed through this study.
Technical Paper

Technique for Analyzing Swirl Injectors of Direct-Injection Gasoline Engines

2001-03-05
2001-01-0964
This paper describes the numerical and experimental approaches that were applied to study swirl injectors that are widely used in direct-injection gasoline engines. As the numerical approach, the fuel and air flow inside an injector was first analyzed by using a two-phase flow analysis method [VOF (Volume of Fluid) model]. A time-series analysis was made of the flow though the injector and also of the air cavity that forms at the nozzle and influences fuel atomization. The calculated results made clear the process from initial spray formation to liquid film formation. Spray droplet formation was then analyzed with the synthesized spheroid particle (SSP) method. As the experimental approach, in order to measure the cavity factor that represents the liquid film thickness, nozzle exit flow velocities were measured by particle image velocimetry (PIV).
Technical Paper

Numerical Analysis of the Exhaust Gas Flow and Heat Transfer in a Close-Coupled Catalytic Converter System During Warm-Up

2001-03-05
2001-01-0943
A new multidimensional calculation method has been developed to simulate the warm-up characteristics of close-coupled catalytic converter systems. First, a one-dimensional gas exchange simulation and a three-dimensional exhaust gas flow calculation are combined to simulate the pulsation gas flow caused by the gas exchange process. The gas flow calculation and a heat transfer calculation are then combined to simulate heat transfer in the exhaust manifold and the catalyst honeycomb under pulsation flow. The predicted warm-up characteristics of the systems examined agreed well with the experimental data. In this simulation, CPU time was reduced greatly through the use of new calculation methods. Finally, the warm-up process of close-coupled catalysts is analyzed in detail with this simulation method. The design requirements for improving warm-up characteristics have been made clear.
Technical Paper

Ultra-Clean Combustion Technology Combining a Low-Temperature and Premixed Combustion Concept for Meeting Future Emission Standards

2001-03-05
2001-01-0200
Experimental investigations were conducted with a direct-injection diesel engine to improve exhaust emission, especially nitrogen oxide (NOx) and particulate matter (PM), without increasing fuel consumption. As a result of this work, a new combustion concept, called Modulated Kinetics (MK) combustion, has been developed that reduces NOx and smoke simultaneously through low-temperature combustion and premixed combustion, respectively. The characteristics of a new combustion concept were investigated using a single cylinder DI diesel engine and combustion photographs. The low compression ratio, EGR cooling and high injection pressure was applied with a multi-cylinder test engine to accomplish premixed combustion at high load region. Combustion chamber specifications have been optimized to avoid the increase of cold-start HC emissions due to a low compression ratio.
Technical Paper

JamaS Study on the Location of In-Vehicle Displays

2000-11-01
2000-01-C010
JAMA (Japan Automobile Manufactures Association, Inc.)'s guideline for car navigation systems is being decided on displayed the amount of information while driving. The position of a display and the estimated equation, which could be applied from a passenger car to a heavy truck, was studied. The evaluation index was the distance which drivers could become aware of a preceding vehicle by their peripheral vision, because car accidents while drivers glance at an in- vehicle display are almost the rear end collisions. As the results, the lower limit of a position of an in-vehicle display for a passenger car was 30 degrees, and a heavy truck was 46 degrees.
Technical Paper

A Study of Heat Rejection and Combustion Characteristics of a Low-temperature and Pre-mixed Combustion Concept Based on Measurement of Instantaneous Heat Flux in a Direct-Injection Diesel Engine

2000-10-16
2000-01-2792
There have been strong demands recently for reductions in the fuel consumption and exhaust emissions of diesel engines from the standpoints of conserving energy and curbing global warming. A great deal of research is being done on new emission control technologies using direct-injection (DI) diesel engines that provide high thermal efficiency. This work includes dramatic improvements in the combustion process. The authors have developed a new combustion concept called Modulated Kinetics (MK), which reduces smoke and NOx levels simultaneously by reconciling low-temperature combustion with pre-mixed combustion [1, 2]. At present, research is under way on the second generation of MK combustion with the aim of improving emission performance further and achieving higher thermal efficiency [3]. Reducing heat rejection in the combustion chamber is effective in improving the thermal efficiency of DI diesel engines as well as that of MK combustion.
Technical Paper

Nissan's Gasoline SULEV Technology

2000-04-02
2000-01-1583
A new gasoline-fueled Super Ultra Low Emissions Vehicle (SULEV) technology has been developed that meets the California Air Resources Board's (CARB) most stringent tailpipe emission levels and zero evaporative emissions, while fulfilling all On-Board Diagnostic II (OBD II) requirements. This paper will describe the various new technologies used in achieving the SULEV standards, such as the HC trap system with an ultra-thin wall substrate for the improvement of catalyst light-off time, and an electrically actuated swirl control valve for reducing cold-start emissions. In addition, a control approach to stabilizing NOx emissions will also be discussed.
Technical Paper

Application of a Variable Valve Event and Timing System to Automotive Engines

2000-03-06
2000-01-1224
This paper describes a new variable valve system that enables continuous control of valve events, i.e. time periods when the valve is open. In this system, valve events are controlled by varying the camshaft angular speed by means of an offset between the center of the camshaft and that of the medium member that transfers crankshaft torque to the camshaft. The medium member, a rotating disk, has a drive pin to enable the transfer of torque. The system has a mechanism that produces an offset between the center of the rotating disk and that of the camshaft as well as an actuator that drives the mechanism. This makes it possible to develop a compact system that can be installed in existing DOHC direct-acting valve train engines without making any major cylinder head modifications.
Technical Paper

Development of Method for Predicting Efficiency of Oil Mist Separators

2000-03-06
2000-01-1234
The inflow of oil mist particles contained in blow-by gas into the intake system worsens emissions. A higher performance oil mist separator system is required to meet emission regulations which will inevitably become stricter in the future. In developing the oil mist separator, however, much of the development time in the past was spent in carrying out repeated tests and studying separator designs. We, therefore, have improved the separator development process by using Computational Fluid Dynamics (CFD) which added several new ideas to improve the analysis accuracy. The comparison of calculated results and experimental results has confirmed that a sufficient accuracy can be obtained to make this method applicable for practical use.
Technical Paper

In-line Hydrocarbon (HC) Adsorber System for Reducing Cold-Start Emissions

2000-03-06
2000-01-0892
An adsorber system for reducing cold-start hydrocarbon (HC) emissions has been developed combining existing catalyst technologies with a zeolite-based HC adsorber. The series flow in-line concept offers a passive and simplified alternative to other technologies by incorporating one additional adsorber substrate into existing converters without any additional valving, purging lines, secondary air, or special substrates. Major technical issues to be resolved for practical use of this system are 1) the ability to adsorb a wide range of HC molecular sizes in the cold exhaust gas and 2) the temperature difference between HC desorption from the adsorber and activation of the catalyst to convert desorbed HCs. This paper describes the current development status of hydrocarbon adsorber aftertreatment technologies. We report results obtained with a variety of adsorber properties, washcoat structures of adsorber catalyst and start-up and underfloor catalyst system combinations.
Technical Paper

Development of New Technologies Targeting Zero Emissions for Gasoline Engines

2000-03-06
2000-01-0890
This paper describes new technologies for achieving exhaust emission levels much below the SULEV standards in California, which are the most stringent among the currently proposed regulations in the world. Catalyst light-off time, for example, has been significantly reduced through the adoption of a catalyst substrate with an ultra-thin wall thickness of 2 mil and a catalyst coating specifically designed for quicker light-off. A highly-efficient HC trap system has been realized by combining a two-stage HC trap design with an improved HC trap catalyst. The cold-start HC emission level has been greatly reduced by an electronically actuated swirl control valve with a high-speed starter. Further, an improved Air Fuel Ratio (AFR) control method has achieved much higher catalyst HC and NOx conversion efficiency.
X